Serveur d'exploration sur l'opéra

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Operator‐oriented CRS interpolation

Identifieur interne : 001170 ( Main/Exploration ); précédent : 001169; suivant : 001171

Operator‐oriented CRS interpolation

Auteurs : German Hoecht [France] ; Patrice Ricarte [France] ; Steffen Bergler [Pays-Bas] ; Evgeny Landa [France]

Source :

RBID : ISTEX:0179D900EEEF9035D8481E48D84BD170DC18F484

Abstract

In common‐reflection‐surface imaging the reflection arrival time field is parameterized by operators that are of higher dimension or order than in conventional methods. Using the common‐reflection‐surface approach locally in the unmigrated prestack data domain opens a potential for trace regularization and interpolation. In most data interpolation methods based on local coherency estimation, a single operator is designed for a target sample and the output amplitude is defined as a weighted average along the operator. This approach may fail in presence of interfering events or strong amplitude and phase variations. In this paper we introduce an alternative scheme in which there is no need for an operator to be defined at the target sample itself. Instead, the amplitude at a target sample is constructed from multiple operators estimated at different positions. In this case one operator may contribute to the construction of several target samples. Vice versa, a target sample might receive contributions from different operators. Operators are determined on a grid which can be sparser than the output grid. This allows to dramatically decrease the computational costs. In addition, the use of multiple operators for a single target sample stabilizes the interpolation results and implicitly allows several contributions in case of interfering events. Due to the considerable computational expense, common‐reflection‐surface interpolation is limited to work in subsets of the prestack data. We present the general workflow of a common‐reflection‐surface‐based regularization/interpolation for 3D data volumes. This workflow has been applied to an OBC common‐receiver volume and binned common‐offset subsets of a 3D marine data set. The impact of a common‐reflection‐surface regularization is demonstrated by means of a subsequent time migration. In comparison to the time migrations of the original and DMO‐interpolated data, the results show particular improvements in view of the continuity of reflections events. This gain is confirmed by an automatic picking of a horizon in the stacked time migrations.

Url:
DOI: 10.1111/j.1365-2478.2009.00789.x


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Operator‐oriented CRS interpolation</title>
<author>
<name sortKey="Hoecht, German" sort="Hoecht, German" uniqKey="Hoecht G" first="German" last="Hoecht">German Hoecht</name>
</author>
<author>
<name sortKey="Ricarte, Patrice" sort="Ricarte, Patrice" uniqKey="Ricarte P" first="Patrice" last="Ricarte">Patrice Ricarte</name>
</author>
<author>
<name sortKey="Bergler, Steffen" sort="Bergler, Steffen" uniqKey="Bergler S" first="Steffen" last="Bergler">Steffen Bergler</name>
</author>
<author>
<name sortKey="Landa, Evgeny" sort="Landa, Evgeny" uniqKey="Landa E" first="Evgeny" last="Landa">Evgeny Landa</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:0179D900EEEF9035D8481E48D84BD170DC18F484</idno>
<date when="2009" year="2009">2009</date>
<idno type="doi">10.1111/j.1365-2478.2009.00789.x</idno>
<idno type="url">https://api.istex.fr/document/0179D900EEEF9035D8481E48D84BD170DC18F484/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001257</idno>
<idno type="wicri:Area/Istex/Curation">001257</idno>
<idno type="wicri:Area/Istex/Checkpoint">000355</idno>
<idno type="wicri:doubleKey">0016-8025:2009:Hoecht G:operator:oriented:crs</idno>
<idno type="wicri:Area/Main/Merge">001182</idno>
<idno type="wicri:Area/Main/Curation">001170</idno>
<idno type="wicri:Area/Main/Exploration">001170</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Operator‐oriented CRS interpolation</title>
<author>
<name sortKey="Hoecht, German" sort="Hoecht, German" uniqKey="Hoecht G" first="German" last="Hoecht">German Hoecht</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>OPERA, Bâtiment IFR, rue Jules Ferry, 64000 Pau</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Aquitaine-Limousin-Poitou-Charentes</region>
<region type="old region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ricarte, Patrice" sort="Ricarte, Patrice" uniqKey="Ricarte P" first="Patrice" last="Ricarte">Patrice Ricarte</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Institut Français du Pétrole (IFP), 1‐4 avenue de Bois‐Preau, 92852 Ruiel Malmaison Cedex</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Ruiel Malmaison</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bergler, Steffen" sort="Bergler, Steffen" uniqKey="Bergler S" first="Steffen" last="Bergler">Steffen Bergler</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Pays-Bas</country>
<wicri:regionArea>Shell International Exploration & Production, Kessler Park 1, 2288 GS Rijswijk</wicri:regionArea>
<wicri:noRegion>2288 GS Rijswijk</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Landa, Evgeny" sort="Landa, Evgeny" uniqKey="Landa E" first="Evgeny" last="Landa">Evgeny Landa</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>OPERA, Bâtiment IFR, rue Jules Ferry, 64000 Pau</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Aquitaine-Limousin-Poitou-Charentes</region>
<region type="old region" nuts="2">Aquitaine</region>
<settlement type="city">Pau</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Geophysical Prospecting</title>
<idno type="ISSN">0016-8025</idno>
<idno type="eISSN">1365-2478</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<pubPlace>Oxford, UK</pubPlace>
<date type="published" when="2009-11">2009-11</date>
<biblScope unit="volume">57</biblScope>
<biblScope unit="issue">6</biblScope>
<biblScope unit="page" from="957">957</biblScope>
<biblScope unit="page" to="979">979</biblScope>
</imprint>
<idno type="ISSN">0016-8025</idno>
</series>
<idno type="istex">0179D900EEEF9035D8481E48D84BD170DC18F484</idno>
<idno type="DOI">10.1111/j.1365-2478.2009.00789.x</idno>
<idno type="ArticleID">GPR789</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0016-8025</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In common‐reflection‐surface imaging the reflection arrival time field is parameterized by operators that are of higher dimension or order than in conventional methods. Using the common‐reflection‐surface approach locally in the unmigrated prestack data domain opens a potential for trace regularization and interpolation. In most data interpolation methods based on local coherency estimation, a single operator is designed for a target sample and the output amplitude is defined as a weighted average along the operator. This approach may fail in presence of interfering events or strong amplitude and phase variations. In this paper we introduce an alternative scheme in which there is no need for an operator to be defined at the target sample itself. Instead, the amplitude at a target sample is constructed from multiple operators estimated at different positions. In this case one operator may contribute to the construction of several target samples. Vice versa, a target sample might receive contributions from different operators. Operators are determined on a grid which can be sparser than the output grid. This allows to dramatically decrease the computational costs. In addition, the use of multiple operators for a single target sample stabilizes the interpolation results and implicitly allows several contributions in case of interfering events. Due to the considerable computational expense, common‐reflection‐surface interpolation is limited to work in subsets of the prestack data. We present the general workflow of a common‐reflection‐surface‐based regularization/interpolation for 3D data volumes. This workflow has been applied to an OBC common‐receiver volume and binned common‐offset subsets of a 3D marine data set. The impact of a common‐reflection‐surface regularization is demonstrated by means of a subsequent time migration. In comparison to the time migrations of the original and DMO‐interpolated data, the results show particular improvements in view of the continuity of reflections events. This gain is confirmed by an automatic picking of a horizon in the stacked time migrations.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>Pays-Bas</li>
</country>
<region>
<li>Aquitaine</li>
<li>Aquitaine-Limousin-Poitou-Charentes</li>
<li>Île-de-France</li>
</region>
<settlement>
<li>Pau</li>
<li>Ruiel Malmaison</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Aquitaine-Limousin-Poitou-Charentes">
<name sortKey="Hoecht, German" sort="Hoecht, German" uniqKey="Hoecht G" first="German" last="Hoecht">German Hoecht</name>
</region>
<name sortKey="Landa, Evgeny" sort="Landa, Evgeny" uniqKey="Landa E" first="Evgeny" last="Landa">Evgeny Landa</name>
<name sortKey="Ricarte, Patrice" sort="Ricarte, Patrice" uniqKey="Ricarte P" first="Patrice" last="Ricarte">Patrice Ricarte</name>
</country>
<country name="Pays-Bas">
<noRegion>
<name sortKey="Bergler, Steffen" sort="Bergler, Steffen" uniqKey="Bergler S" first="Steffen" last="Bergler">Steffen Bergler</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/OperaV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001170 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001170 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    OperaV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:0179D900EEEF9035D8481E48D84BD170DC18F484
   |texte=   Operator‐oriented CRS interpolation
}}

Wicri

This area was generated with Dilib version V0.6.21.
Data generation: Thu Apr 14 14:59:05 2016. Site generation: Thu Jan 4 23:09:23 2024